De Wikipedia, le encyclopedia libere
百度 习近平总书记在党的十九大上所作的报告,彰显了我们党不忘初心、戮力同心决胜全面建成小康社会,夺取新时代中国特色社会主义伟大胜利的磅礴力量。
In algebra linear , un forma sesquilinear [ 1] es un function
f
:
V
×
W
→
F
:
(
v
,
w
)
?
f
(
v
,
w
)
=
?
v
,
w
?
{\displaystyle f:V\times W\rightarrow F:(v,w)\mapsto f(v,w)=\langle v,w\rangle }
que adjunge duo vectores del spatios vectorial complexe
V
{\displaystyle V}
e
W
{\displaystyle W}
a un valor scalar del corpore
F
{\displaystyle F}
(sovente
F
=
C
{\displaystyle F=\mathbb {C} }
) tal que pro
v
,
v
1
,
v
2
∈
V
{\displaystyle v,v_{1},v_{2}\in V}
,
w
,
w
1
,
w
2
∈
W
{\displaystyle w,w_{1},w_{2}\in W}
, e
λ
∈
C
{\displaystyle \lambda \in \mathbb {C} }
es ver
?
v
1
+
v
2
,
w
?
=
?
v
1
,
w
?
+
?
v
2
,
w
?
{\displaystyle \langle v_{1}+v_{2},w\rangle =\langle v_{1},w\rangle +\langle v_{2},w\rangle }
?
λ
v
,
w
?
=
λ
ˉ
?
v
,
w
?
{\displaystyle \langle \lambda v,w\rangle ={\overline {\lambda }}\;\langle v,w\rangle \quad \quad \quad \quad \quad \quad \quad \quad }
(Semilinearitate in le prime argumento )
?
v
,
w
1
+
w
2
?
=
?
v
,
w
1
?
+
?
v
,
w
2
?
{\displaystyle \langle v,w_{1}+w_{2}\rangle =\langle v,w_{1}\rangle +\langle v,w_{2}\rangle }
?
v
,
λ
w
?
=
λ
?
v
,
w
?
{\displaystyle \langle v,\lambda w\rangle =\lambda \,\langle v,w\rangle \quad \quad \quad \quad \quad \quad \quad \quad }
(Linearitate in le secunde argumento ).
In le corpore
R
{\displaystyle \mathbb {R} }
del numeros real , le forma sesquilinear concorda con le forma bilinear.
↑
Derivation (in ordine alphabetic):
(ca ) ||
(de) Sesquilinearform ||
(en) Sesquilinear form ||
(es) Forma sesquilineal ||
(fr) Forme sesquilinéaire ||
(it) Forma sesquilineare ||
(pt) Forma sesquilinear ||
(ro )
|| (ru) Полуторалинейная форма